一 数学是什么
这里所要说明的“数学”这一个词,包含着算术、代数、几何、三角等等在内。用英文名词来说,那就是Mathematics。它的定义,照平常的想法,非常简单、明了,几乎用不到再说明。若真要说明,问题却有很多。且先举罗素(Russell),在他所著的《数理哲学》提出的定义,真是叫人莫名其妙,好像在开玩笑一样。他说:
“Mathematics is the subject in which we never know what we are talking about nor whether what we are saying is true.”
将这句话粗疏地翻译出来,就是:
“数学是这样一回事,研究它这种玩意儿的人也不知道自己究竟在干些什么。”
这样的定义,它的惝恍迷离,它的神奇莫测,真是“不说还明白,一说反糊涂”。然而,要将已经发展到现在的数学的领域统括得完全,要将它繁复、灿烂的内容表示得活跃,好像除了这样也没有别的更好的话可说了。所以伯比里慈(Papperitz)、伊特耳生(Itelson)和路易·古度拉特(Louis Couturat)几位先生对于数学所下的定义也是和这个气味相同。
对于一般的数学读者,这定义,恐怕反而使大家坠人五里雾中,因此拨云雾见青天的工作似乎少不了。罗素所下的定义,它的价值在什么地方呢?它所指示的是什么呢?要回答这些问题,还是用数学的其他定义来相比较更容易明白。 在希腊,亚里士多德(Aristotle)那个时代,不用说,数学的发展还很幼稚,领域也极狭小,所以只需说数学的定义是一种“计量的科学”,便可使人心满意足了。可不是吗?这个定义,初学数学的人是极容易明白、满足的。他们解四则问题、学复名数的计算,再进到比例、利息,无一件不是在计算量。就是学到代数、几何、三角,也还不容易发现这个定义的破绽。然而仔细一想,它实在有些不妥帖。第一,什么叫作量,虽然我们可以用一般的知识来解释。但真要将它的内涵弄明白,也不容易。因此用它来解释别的名词,依然不能将那名词的概念明了地表示出来。第二,就是用一般的知识来解释量,所谓计量的科学这个谓语也不能够明确地划定数学的领域。像测量、统计这些学科,虽然它们各有特殊的目的,但也只是一种计量。由此可知,仅仅用“计算的科学”这一个谓语联系到数学而成一个数学的定义,未免广泛了一点。
若进一步去探究,这个定义的欠缺还不止这两点,所以孔德(Comte)就加以修改而说:“数学是间接测量的科学。”照前面的定义,数学是计量的科学,那么必定要有量才有可计算的,但它所计的量是用什么手段得来的呢?用一把尺子就可以量一块布有几尺几寸宽、几丈几尺长;用一杆秤就可以量一袋米有几斤几两重,这自然是可以直接办到的。但若是测量行星轨道的广狭、行星的体积.或是很小的分子的体积,这些就不是人力所能直接测定的,然而由数学的方法可以间接将它们计算出来。因此,孔德所下的这个定义,虽然不能将前一个定义的缺点完全补正,但总是较进一步了。
孔德究竟是十九世纪前半期的人物,虽然他是一个不可多得的哲学家和数学家,但在他的时代,数学的领域远不及现在广阔,如群论、位置解析、投影几何、数论以及逻辑的代数等,这些数学的支流的发展,都是他以后的事。而这些支流和量或测量实在没什么关系。即如笛沙格(Desargues)所证明的一个极有兴味的定理:“两三角形的顶点若在集交于一点的三直线上,则它们的相应边的交点就在一条直线上。”
这个定理的证明,就只用到位置的关系,和量毫不相干。数学的这种进展,自然是轻巧地将孔德所给的定义攻破了。
到了1970年,皮尔士(Peirce)就另外给数学下了一个这样的定义:
“数学是产生‘必要的’结论的科学。”
不用说,这个定义比以前的都广泛得多,它已离开了数、量、测量等这些名词。我们知道,数学的基础是建筑在几个所谓公理上面的。从方法上说,不过由这几个公理出发,逐渐演绎出去而组成一个秩序井然的系统。所谓公式、定理,只是这演绎所得的结论。
照这般说法,皮尔士的定义可以说是完整无缺吗?
不!依了几个基本的公理,照逻辑的法则演绎出的结论,只是“必然的”。若说是“必要”,那就很可怀疑。我们若要问怎样的结论才是必要的,这岂不是很难回答吗?
P1-3